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When a subject is well understood, it can be explained in a few words, but
the road to that understanding can be a long one, indeed. Every human
being since the beginning of time has understood the effects of
gravity—you trip, you fall down. Yet Sir Isaac Newton explained this
phenomenon briefly and accurately only recently on the human time
scale.

I have been working on developing the material in this book and circu-
lating it back to testers and their management for many years. Most of
the methods and techniques presented here are simple, but good
answers don’t have to be difficult. Many of these methods are about as
old and patentable as oatmeal; others are new. Many of these methods
have been discussed and debated for months and even years with
colleagues.

The first four chapters of the original version of this book have been
available online for four years. In that time the number of readers has
risen steadily; presently about 350 visitors read these chapters each
week. More than 2,500 software testers and managers in various indus-
tries reviewed this work and provided feedback on it. To all those who
took part in those discussions, asked questions, picked nits, or came
back and reported which steps they tried to implement and how it
worked, I want to say again, “Thank you. And don’t stop the feedback;
that’s how we improve our knowledge.”
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I N T R O D U C T I O N

xvii

Ilive in a software development world where product development is
not an orderly consistent march toward a tangible goal. “The Project
Plan” usually consists of a laundry list of functions dropped off by
somebody from marketing. Management embellishes “The Plan” with
start and end dates that are of highly questionable origins and totally
unreachable. The design and implementation of the product are clan-
destinely guarded by developers. The product routinely arrives in test
virtually unannounced and several weeks late. The tester has not fin-
ished the test plan because no one is quite sure what the thing does. The
only sure thing is the product must ship on time, next week. 

That is software development—chaotic and harried. This book is dedi-
cated to the proposition that this development system is primitive and
enormously wasteful. This book presents several methods that provide
better ways to perform the business of understanding, controlling, and
delivering the right product to the market on time. These methods,
taken singly or in groups, provide large cost savings and better-quality
products for software developers. 

I am a practitioner. I work where the rubber meets the road. I am often
present when the user puts their hands on the product for the first time.
I deal with real solutions to real problems. I also deal with the frustra-
tion of both the customers (who are losing money because the product
is failing in some way) and the front-line support people. Front-line
support is typically caught in the middle between development groups,
who have other priorities, and the customer, who needs the system
fixed “right now.”

I work with the developer, whose job is to write good code. Developers
do not have time to fill out all those forms quality assurance wants, or to
compose an operations document that the test and support groups need.
I work with the testers, who really don’t know what’s going on back
there in the system. They keep breaking it, but they can’t reproduce the
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problems for development. And I work with the document writers, who
can’t understand why the entire user interface changed just two weeks
before the end of the test cycle.

My role is to prevent failures and enhance productivity through automa-
tion and process optimization. I work primarily on applications running
in large networks. These systems are huge and contain a variety of
components that need to be tested. Typically, there are object-oriented
modules and graphical user interfaces (GUIs), and browser-based inter-
faces. These applications typically interact with databases, communications
networks, specialized servers, and embedded code, driving specialized
hardware—and all of them need to be tested. The methods in this book are
distilled from experiences, both failures and successes, with projects that
have touched all of these areas.

This is also a work about “how to solve problems,” so it is rich with
commentary on human factors. Systems are designed, written, inte-
grated, tested, deployed, and supported by human beings, for human
beings. We cannot ignore the fact that human factors play a major role
in virtually all system failures.

What This Book Is About

This book is a software tester’s guide to managing the software test
effort. This is not a formula book of test techniques, though some pow-
erful test techniques are presented. This book is about defensible test
methods. It offers methods and metrics that improve the test effort,
whether or not formal test techniques are used. It is about how to use
metrics in the test effort. There is no incentive to take measurements if
you don’t know how to use the results to help your case, or if those
results might be turned against you. This book shows how to use mea-
surement to discover, to communicate those discoveries to others, and
to make improvements.

Some time back I was presenting an overview of these methods at a
conference. Part of the presentation was a case study. After these meth-
ods were applied, a test inventory was built, and the risk analysis was
performed for the system, it was determined within this case study that
the optimal test coverage given the time and resources allowed was
67 percent coverage of the entire test inventory. 

I n t r o d u c t i o nxviii
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During the question-and-answer session that followed my presenta-
tion, a very distinguished and tall fellow practitioner (he stands well
over six feet) said, “Excuse me for mentioning this, but it strikes me that
you are a very small person. I was wondering where you find the
courage to tell your managing director that you only plan to test 67 per-
cent of the system?” 

My answer: “It is true that I am only 5'6'', but I am big on the truth. If
management wants to give me enough time and resources to test every
item on the inventory, I will be happy to do so. But if they want me to
do with less than that, I am not going to soft sell the fact that they will
get less than 100 percent test coverage. If there isn’t time and resources
to test everything, then I want to be sure that the tests conducted are the
most important tests.”

I am also going to tell management how good that selection of tests
was, how many bugs the test effort found, how serious they were and
how much it cost to find them, and if possible, how much was saved
because we found and removed them. I will measure the performance
of the test effort and be able to show at any time whether we are on
schedule or not, if the error densities are too high, or if the bug-fix rate
is too low. If we cannot stay on schedule, I can give management the
high-quality information it needs to do what it does best, specifically,
manage the situation.

Industry and Technology Trends: Why I Think It’s Time
to Publish This Book 

I began developing these methods in the late 1980s when I worked at
Prodigy. They evolved to suit the needs of a fast-paced development
environment feeding a large, complex real-time system. They were
called the Most Important Tests method, or MITs. MITs quickly became
the standard for testing methods at Prodigy, and I began writing and
publishing case studies of MITs projects in 1990. I took MITs with me
when I left Prodigy in 1993, and it continued to evolve as I tackled more
and more testing projects in other industries. I spent most of the last 10
years helping businesses embrace and profit from integrating large sys-
tems and the Internet. 

Introduct ion xix
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The (PowerPoint-based) syllabus that I developed to teach MITs since
1993 is based on the first seven chapters that I wrote for the original
book, Software Testing Methods and Metrics. The emphasis then was on
client/server testing, not the Internet, and that is reflected in the origi-
nal chapters.

First offered in 1993, the course has been taught several times each year
ever since. I put the original first four chapters on my Web site in 1997.
The number of people reading these four chapters has increased
steadily over the years. This year some 17,000 visitors have down-
loaded these chapters. The most popular is Chapter 2, “Fundamental
Methods.” Because of its popularity and the many e-mail discussions it
has sparked, it has been expanded here into Chapter 3: “Approaches to
Managing Software Testing,” and Chapter 4: “The Most Important Tests
(MITs) Method.” 

Changing Times

I spent most of 2001 working on Microsoft’s .NET developer training
materials, and in the process, I became very familiar with most of the
facets of .NET. Bottom line is, the new .NET architecture, with its uni-
fied libraries, its “all languages are equal” attitude about development
languages, and its enablement of copy-and-run applications and Web
services brings us back to the way we did things in the early 1990s—
those heady days I spent at Prodigy. The big and exciting difference is
that Prodigy was small and proprietary; .NET will be global and public
(as well as private). 

It will be two years before we really begin to see the global effects of this
latest shortening of the software development cycle. Literally, anyone
can deploy and sell software as a Web service on global scale, without
ever burning a CD, or writing a manual, or paying for an ad in a maga-
zine. And at some point, that software will be tested. 

The picture becomes even more interesting when you consider that we
are now just beginning the next wave of Internet evolution; the mobile
Internet. Just as the PC revolutionized the way we do business today,
the smart phones and pocket PCs will allow more people than ever
before to access dynamic applications on small screens, with tenuous
data links. The methods in this book evolved in just such an environ-
ment, and were successful.

I n t r o d u c t i o nxx
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Software testing must show that it adds value, and that it is necessary
for product success. Otherwise, market forces will encourage competi-
tive shops to forego testing and give the product to the users as fast as
they can write it and copy it to the server. 

This book is about fundamentals, and fortunately, “fundamental” con-
cepts, while sometimes out of style, evolve very slowly. The examples
in the original Prodigy work were out of style in the client/server days;
they are very much back in style in the .NET world. In many ways,
revising this work to be current today is actually taking it back to its
original state. 

Scope of This Book and Who Will Find It Useful

This book is a field guide aimed squarely at testers and management
involved with developing software systems and applications. It con-
tains practical solutions, not theory. Theory and background are pre-
sented only to support the practical solutions. 

This is a tester’s survival guide because it helps testers supply answers
that management understands and respects. Testers need to answer the
question, “Why can’t you have it tested by next week?” This work is
also a manager’s survival guide because managers have to explain why
things are the way they are, how much it’s going to cost, and why. 

The methods presented here were developed in large networks. Often
these networks are running a combination of Web-based and
client/server-based applications, some on the public Internet and some
running privately behind the firewall. These systems are generally writ-
ten at least in part using object-oriented languages, and all are accessed
using graphical user interfaces, be they dedicated clients or Web pages
running in a browser. These test methods have been used to test a rich
variety of other software systems as well, including telecommunica-
tions, business applications, embedded firmware, and game software.

The process described in this book is a top-down approach to testing.
These methods can be used to test at the unit level, but they are more
useful in integration, system, and end-to-end test efforts. These test
methods are often used later in the project life cycle, in load testing, per-
formance testing, and production system monitoring. Opportunities for
automation or test reuse are noted as appropriate.

Introduct ion xxi
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Last, this is not an all-or-none test guide. A process improvement can
result from implementing parts of these methods, like adding a metric
to test tracking, or prioritizing tests and keeping track of how long each
one takes to run.

How This Book Is Organized

The chapters have been organized to parallel the process flow in most
software development and test efforts. Successive chapters tend to
build on what came in the chapters before; so jumping right into
the middle of the book may not be a good idea. It is best to proceed
sequentially.

Case studies, notes on automation, test techniques, usability issues, and
human factors appear throughout the text. It is broken into three main
blocks: 

Chapters 1 to 5 concentrate on background and concepts. 

Chapters 6 to 8 focus on the inventory and how to make it.

Chapters 9 to 14 cover tools and analysis techniques for test estima-
tion, sizing, and planning. 

The Standard for Definitions in This Book

The standard for all definitions given in this book is Webster’s New
World Dictionary of the American Language (College Edition, Prentice
Hall). However, any good dictionary should be acceptable. When I refer
to a definition from some other work, I will cite the work. I have tried to
limit such references to works that are readily available to everyone
today. 

One of the major stumbling blocks I have encountered in educating peo-
ple involved in developing and testing software is the lack of consensus
on the meaning of basic terms. This is richly illustrated in the test survey
discussed in Chapter 1 and presented in Appendix B of this book. 

The biggest reason for this lack of consensus is that while there are
plenty of standards published in this industry, they are not readily
available or easy to understand. The second reason for the lack of 
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consensus is simple disagreement. I have often heard the argument,
“That’s fine, but it doesn’t apply here.” It’s usually true. Using the dic-
tionary as the standard solves both of these problems. It is a starting
point to which most people have access and can acknowledge. It is also
necessary to go back to basics. In my research I am continually con-
fronted with the fact that most people do not know the true meaning of
words we use constantly, such as test, verify, validate, quality, performance,
effectiveness, efficiency, science, art, and engineering.

To those who feel I am taking a step backward with this approach, it is
a requirement of human development that we must learn to creep
before we can crawl, to crawl before we can walk, and to walk before
we can run. The level of mastery that can be achieved in any phase of
development is directly dependent on the level of mastery achieved in
the previous phase. I will make as few assumptions as possible about
my readers’ level of knowledge.

We software developers and testers came to this industry from many
directions, many disciplines, and many points of view. Because of this,
consensus is difficult. Nevertheless, I believe that our diversity gives us
great strength. The interplay of so many ideas constantly sparks inven-
tion and innovation. The computer industry is probably home to the
largest cooperative inventive undertaking in human history. It simply
needs to be managed.
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Installing Custom Controls 1

The State of Software 
Testing Today 

C H A P T E R  

The director asked the tester, “So you tested it? It’s ready to go to
production?

1

1

1 Commercial software is software that is commercially available and can be purchased by the
public. This distinguishes it from safety-critical, proprietary, or military software.

The tester responded, “Yes, I tested it. It’s ready to go.”

The director asked, “Well, what did you test?”

The tester responded, “I tested it.”

In this conversation, I was the tester. It was 1987 and I had just com-
pleted my first test assignment on a commercial software system.1 I had
spent six months working with and learning from some very good
testers. They were very good at finding bugs, nailing them down, and
getting development to fix them. But once you got beyond the bug sta-
tistics, the testers didn’t seem to have much to go on except it. Happily,
the director never asked what exactly it was. 

The experience made me resolve to never again be caught with such a
poor answer. I could not always be so lucky as to have management
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that would accept it for an answer. All my training as a structural engi-
neer had prepared me to give my management a much better answer
than it.

Suppose the supervisor on a building project asked if I tested the steel
superstructure on Floor 34 and needed to know if it was safe to build
Floor 35. If I said “yes” and if the supervisor then asked, “What did you
test?” I would have a whole checklist of answers on the clipboard in my
hand. I would have a list with every bolt connection, the patterns of
those connections, the specified torque wrench loading used to test the
bolts, and the results from every bolt I had touched. I would know
exactly which bolts I had touched because each would be marked with
fluorescent paint, both on my chart and on the steel. 

Why should software testing be any different? I could certainly give my
management a better answer than it. Many of these better answers were
around when the pyramids were being built. When I am asked those
questions today, my answer sounds something like this:

As per our agreement, we have tested 67 percent of the test inventory.
The tests we ran represent the most important tests in the inventory as
determined by our joint risk analysis. The bug find rates and the sever-
ity composition of the bugs we found were within the expected range.
Our bug fix rate is 85 percent. 

It has been three weeks since we found a Severity 1 issue. There are cur-
rently no known Severity 1 issues open. Fixes for the last Severity 2
issues were regression-tested and approved a week ago. The testers have
conducted some additional testing in a couple of the newer modules.
Overall, the system seems to be stable.

The load testing has been concluded. The system failed at 90 percent of the
design load. The system engineers believe they understand the problem, but
they say they will need three months to implement the fix. Projections say
the peak load should only be at 75 percent by then. If the actual loading goes
above 90 percent, the system will fail. 

Our recommendation is to ship on schedule, with the understanding that
we have an exposure if the system utilization exceeds the projections before
we have a chance to install the previously noted fix.

The thing that I find most amazing is that answers like these are not
widely used in the industry today. I regularly hear testers and developers
using it metrics. 

C h a p t e r  12
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Throughout the 1990s I gave out a survey every time I taught a testing
course. Probably 60 percent of the students taking these courses were
new to testing, with less than one year as a tester. About 20 percent had
from one to five years’ experience, and the remainder were expert testers.
The survey asked the student to define common testing terms like test,
and it asked them to identify the methods and metrics that they regularly
used as testers. The complete results of these surveys are presented in the
appendix of this book. I will mention some of the highlights here.

■■ The only type of metrics used regularly have to do with counting
bugs and ranking them by severity. Only a small percentage of
respondents measure the bug find rate or the bug fix rate. No other
metrics are widely used in development or testing, even among the
best-educated and seemingly most competent testers. It can also be
inferred from these results that the companies for which these
testers work do not have a tradition of measuring their software
development or test processes.

■■ Few respondents reported using formal methods such as inspection
or structured analysis, meaning some documented structured or
systematic method of analyzing the test needs of a system. The
most commonly cited reason for attending the seminar was to
learn some software testing methods. 

■■ The majority of testers taking the survey (76 percent) had had some
experience with automated test tools. Today an even greater per-
cent of testers report that they have used automated test tools, but
test automation is also voted as the most difficult test technique to
implement and maintain in the test effort. 

■■ The respondents who are not actively testing provided the most
accurate definitions of the testing terms. The people performing the
testing supplied the poorest definitions of the testing tasks that they
are performing most frequently.

Overall, I believe that the quality of the tester’s level of awareness is
improving, and, certainly, software testing practices have improved in
the commercial software development sector. Today there are more
publications, tools, and discussion groups available than there were 10
years ago. There are certainly more shops attempting to use formal
methods and testing tools. But the survey results haven’t changed
much over the years. 

The State of Software Testing Today 3
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How did we get to this mind-set? How did these limitations in percep-
tions—and, unfortunately, all too often in practice—come about?
To understand that, we need to examine the evolution of software
development and testing during the last two decades.

A Quick Look at How We Got Where We Are

Most of the formal methods and metrics around today had their start
back in the 1970s and 1980s when industry began to use computers.
Computer professionals of that time were scientists, usually mathe-
maticians and electrical engineers. Their ideas about how to conduct
business were based on older, established industries like manufactur-
ing; civil projects like power plants; and military interests like avionics
and ballistics. 

The 1980s: The Big Blue and Big Iron Ruled

By the 1980s, computers were widely used in industries that required
lots of computation and data processing. Software compilers were
empowering a new generation of programmers to write machine-
specific programs.

In the 1980s computers were mainframes: big iron. Large corporations
like IBM and Honeywell ruled the day. These computers were expen-
sive and long-lived. We expected software to last for five years, and we
expected hardware to last even longer—that is, how long it takes to
depreciate the investment. As a result, buying decisions were not made
lightly. The investments involved were large ones, and commitments
were for the long term, so decisions were made only after careful
consideration and multiyear projections.

Fact: Computers in the 1980s: expensive, long-term commitment, lots of technical
knowledge required

Normally a vendor during the 1980s would sell hardware, software,
support, education, and consulting. A partnership-style relationship
existed between the customer and the vendor. Once a vendor was
selected, the company was pretty much stuck with that company until
the hardware and software were depreciated; a process that could take
10 or more years. 
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